首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67080篇
  免费   8488篇
  国内免费   4851篇
电工技术   6273篇
技术理论   5篇
综合类   6795篇
化学工业   9649篇
金属工艺   2711篇
机械仪表   4797篇
建筑科学   3912篇
矿业工程   2280篇
能源动力   5481篇
轻工业   1346篇
水利工程   6576篇
石油天然气   4520篇
武器工业   734篇
无线电   7017篇
一般工业技术   5073篇
冶金工业   3191篇
原子能技术   1585篇
自动化技术   8474篇
  2024年   153篇
  2023年   987篇
  2022年   1810篇
  2021年   2249篇
  2020年   2373篇
  2019年   1963篇
  2018年   1872篇
  2017年   2448篇
  2016年   2639篇
  2015年   2810篇
  2014年   4009篇
  2013年   4546篇
  2012年   4811篇
  2011年   5354篇
  2010年   3822篇
  2009年   4029篇
  2008年   3796篇
  2007年   4453篇
  2006年   4128篇
  2005年   3678篇
  2004年   3023篇
  2003年   2751篇
  2002年   2242篇
  2001年   1818篇
  2000年   1486篇
  1999年   1209篇
  1998年   1002篇
  1997年   843篇
  1996年   766篇
  1995年   711篇
  1994年   620篇
  1993年   448篇
  1992年   386篇
  1991年   231篇
  1990年   230篇
  1989年   175篇
  1988年   127篇
  1987年   89篇
  1986年   63篇
  1985年   41篇
  1984年   57篇
  1983年   38篇
  1982年   22篇
  1981年   11篇
  1980年   10篇
  1979年   18篇
  1978年   5篇
  1977年   4篇
  1959年   25篇
  1951年   23篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
In this paper, we prepare a novel biomimetic caterpillar-like alumina fiber with the characteristic of continuous alumina backbone and fine needle whiskers spine. Then the high-performance caterpillar-like alumina fiber composite proton exchange membrane (CAPEM) is obtained by introducing the amino modified biomimetic caterpillar-like alumina fiber into sulfonated polysulfone (SPSF) matrix, which successfully reasonable construction of the proton conducting channels in both vertical and horizontal orientation. The properties of CAPEM, including proton conductivity, methanol permeability, etc. Are systematically studied. The results show that the proton conductivity of CAPEM increases with rising the temperature, which reaches the maximum of 0.263 S/cm at 80 °C and 100% RH, respectively. The excellent proton conductivity of CAPEM is attributed to the long-range continuous proton conducting channel formed by the horizontal continuous alumina skeleton in the in-plane direction and the vertical overlapped fine needle whiskers spine in the through-plane direction. In addition, the interfacial compatibility between amino modified caterpillar-like alumina fiber and SPSF matrix is enhanced through the reasonable construction of proton conducting channels, which effectively inhibits the methanol permeation of the composite membrane with 4.18 × 10?7 cm2 s?1 and improves the comprehensive performance of the CAPEM.  相似文献   
12.
We considered the magnetohydrodynamic (MHD) free convective flow of an incompressible electrically conducting viscous fluid past an infinite vertical permeable porous plate with a uniform transverse magnetic field, heat source and chemical reaction in a rotating frame taking Hall current effects into account. The momentum equations for the fluid flow during absorbent medium are controlled by the Brinkman model. Through the undisturbed state, both the plate and fluid are in a rigid body rotation by the uniform angular velocity perpendicular to an infinite vertical plate. The perpendicular surface is subject to the homogeneous invariable suction at a right angle to it and the heat on the surface varies about a non-zero unvarying average whereas the warmth of complimentary flow is invariable. The systematic solutions of the velocity, temperature, and concentration distributions are acquired systematically by utilizing the perturbation method. The velocity expressions consist of steady-state and fluctuating situations. It is revealed that the steady part of the velocity field has a three-layer characteristic while the oscillatory part of the fluid field exhibits a multi-layer characteristic. The influence of various governing flow parameters on the velocity, temperature, and concentration are analyzed graphically. We also discuss computational results for the skin friction, Nusselt number, and Sherwood number in the tabular forms.  相似文献   
13.
Higher transmission rate is one of the technological features of prominently used wireless communication namely Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing (MIMO–OFDM). One among an effective solution for channel estimation in wireless communication system, specifically in different environments is Deep Learning (DL) method. This research greatly utilizes channel estimator on the basis of Convolutional Neural Network Auto Encoder (CNNAE) classifier for MIMO-OFDM systems. A CNNAE classifier is one among Deep Learning (DL) algorithm, in which video signal is fed as input by allotting significant learnable weights and biases in various aspects/objects for video signal and capable of differentiating from one another. Improved performances are achieved by using CNNAE based channel estimation, in which extension is done for channel selection as well as achieve enhanced performances numerically, when compared with conventional estimators in quite a lot of scenarios. Considering reduction in number of parameters involved and re-usability of weights, CNNAE based channel estimation is quite suitable and properly fits to the video signal. CNNAE classifier weights updation are done with minimized Signal to Noise Ratio (SNR), Bit Error Rate (BER) and Mean Square Error (MSE).  相似文献   
14.
In the current work, numerical simulations are achieved to study the properties and the characteristics of fluid flow and heat transfer of (Cu–water) nanofluid under the magnetohydrodynamic effects in a horizontal rectangular canal with an open trapezoidal enclosure and an elliptical obstacle. The cavity lower wall is grooved and represents the heat source while the obstacle represents a stationary cold wall. On the other hand, the rest of the walls are considered adiabatic. The governing equations for this investigation are formulated, nondimensionalized, and then solved by Galerkin finite element approach. The numerical findings were examined across a wide range of Richardson number (0.1 ≤ Ri ≤ 10), Reynolds number (1 ≤ Re ≤ 125), Hartmann number (0 ≤ Ha ≤ 100), and volume fraction of nanofluid (0 ≤ φ ≤ 0.05). The current study's findings demonstrate that the flow strength increases inversely as the Reynolds number rises, which pushes the isotherms down to the lower part of the trapezoidal cavity. The Nuavg rises as the Ri rise, the maximum Nuavg = 10.345 at Ri = 10, Re = 50, ϕ = 0.05, and Ha = 0; however, it reduces with increasing Hartmann number. Also, it increase by increasing ϕ, at Ri = 10, the Nuavg increased by 8.44% when the volume fraction of nanofluid increased from (ϕ = 0–0.05).  相似文献   
15.
Based on the premise that large bubbles are removed in larger cyclones and small bubbles in smaller cyclones, a combined degassing cyclone with main and subsidiary chambers was designed to enhance liquid degassing. The pressure loss, liquid flow rate at the gas outlet, split ratio, gas flow rate at the liquid outlet, and degassing efficiency of the degassing cyclone were measured and calculated. Pressure loss correlations were established which relates the Euler number to the gas and liquid Reynolds numbers in the main chamber. Most cases exhibit a degassing efficiency greater than 0.998 when the liquid flow rate is more than 0.7 m3h?1. The contours of pressure loss, split ratio, and degassing efficiency provide an effective guidance for designing a degassing cyclone.  相似文献   
16.
Powder transport systems are ubiquitous in various industries, where they can encounter single powder flow, two-phase flow with solids carried by gas or liquid, and gas–solid–liquid three-phase flow. System geometry, operating conditions, and particle properties have significant impacts on the flow behavior, making it difficult to achieve good transportation of granular materials. Compared to experimental trials and theoretical studies, the numerical approach provides unparalleled advantages over the investigation and prediction of detailed flow behavior, of which the discrete element method (DEM) can precisely capture complex particle-scale information and attract a plethora of research interests. This is the first study to review recent progress in the DEM and coupled DEM with computational fluid dynamics for extensive powder transport systems, including single-particle, gas–solid/solid–liquid, and gas–solid–liquid flows. Some important aspects (i.e., powder electrification during pneumatic conveying, pipe bend erosion, non-spherical particle transport) that have not been well summarized previously are given special attention, as is the application in some new-rising fields (ocean mining, hydraulic fracturing, and gas/oil production). Studies involving important large-scale computation methods, such as the coarse grained DEM, graphical processing unit-based technique, and periodic boundary condition, are also introduced to provide insight for industrial application. This review study conducts a comprehensive survey of the DEM studies in powder transport systems.  相似文献   
17.
张庆弢  毕超 《中国塑料》2022,36(6):87-91
基于CFD?DEM耦合方法,研究了颗粒在水室内的流动状态,分析了不同刀盘转速、粒子水通入量和水室出口角度对造粒过程的影响,发现提高刀盘转速、增加粒子水通入量和水室出口倾斜一定的角度都有利于水室内颗粒的排出。进一步研究了颗粒与碎屑在水室内的流动,发现在水室出口处二者的流动基本呈现出一定的分离角度。  相似文献   
18.
It is clear that the entire world have to research, develop, demonstrate and plan for alternative energy systems for shorter term and also longer term. As a clean energy carrier, hydrogen has become increasingly important. It owes its prestige to the increase within the energy costs as a result of the equivocalness in the future availability. Two phase flow and hydrogen gas flow dynamics effect on performance of water electrolysis. Hydrogen bubbles are recognized to influence energy and mass transfer in gas-evolving electrodes. The movement of hydrogen bubbles on the electrodes in alkaline electrolysis is known to affect the reaction efficiency. Within the scope of this research, a physical modeling for the alkaline electrolysis is determined and the studies about the two-phase flow model are carried out for this model. Internal and external forces acting on the resulting bubbles are also determined. In this research, the analytical solution of two-phase flow analysis of hydrogen in the electrolysis is analyzed.  相似文献   
19.
This paper focuses on thermal destratification and pressurisation inside thermally stratified storage tanks by continuous gas bubbling. The primary purpose of doing these studies is to better understand the effect of bubble dynamics on thermal destratification and quantify the extent of destratification. The volume of fluid and interface compression method of OpenFOAM CFD code is utilised for the present analysis. Different values of inlet gas velocities (Vg), orifice diameters (do), and arrangement of the orifices in triangular and square fashion with different pitches (p/do) are considered. In addition, the effect of gravitational forces (g/ge) on thermal destratification is also reported. For all these cases, the effectiveness of thermal destratification is quantified in terms of a newly defined parameter, the destratification index (Id). For Vg = 1 m/s, the Id value is maximum compared to lower Vg values. It is seen that when the gas velocity increased from 0.3 m/s to 1.0 m/s, the average effectiveness in thermal destratification (Idavg) and pressure at the ullage increased by 44.38% and by 64.81%, respectively. The Idavg and pressure at ullage increased by 96.29% and 14.91%, respectively, when the g/ge ratio changed from 0.3 to 3. Compared to the triangular arrangement with p/do = 10, the calculated Idavg increased by 30.67% when gas inlets were arranged with a square pitch of 10. For p/do = 4, 6 and 8, the increments in Idavg are of the order of 12.86%, 19.43% and 21.92%, respectively, for gas inlets arranged in a square fashion as compared to the triangular arrangement. It is found that continuous bubbling with gas inlets arranged in square pitch p/do = 10 gives higher effectiveness in thermal destratification. Thus, by these studies, one can develop a thermal destratification mechanism with continuous bubbling for optimum performance. Also, these studies give an overall idea of sparger design for getting the correct gas flow rate for thermal destratification within the cryogenic liquid storage tanks.  相似文献   
20.
Sealing performance between two contacting surfaces is of significant importance to stable operation of proton exchange membrane (PEM) fuel cells. In this work, an analytical micro-scale approach is first established to predict the gas leakage in fuel cells. Gas pressure and uneven pressure distribution at the interface are also included in the model. At first, the micro tortuous leakage path at the interface is constructed by introducing contact modelling and fractal porous structure theory. In order to obtain the leakage at the entire surface, contact pressure distribution is predicted based on bonded elastic layer model. The gas leakage through the discontinuous interface can be obtained with consideration of convection and diffusion. Then, experiments are conducted to validate the numerical model, and good agreement is obtained between them. Finally, influences of surface topology, gasket compression and gasket width on leakage are studied based on the model. The results show that gas leakage would be greatly amplified when the asperity standard deviation of surface roughness exceeds 1.0 μm. Gaskets with larger width and smaller thickness are beneficial to sealing performance. The model is helpful to understand the gas leakage behavior at the interface and guide the gasket design of fuel cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号